Introduction to Network Security

Appendix A Cryptology

Topics

- Hash Functions
- Symmetric Key Encryption
- Asymmetric Encryption
- Digital Signatures
- Symmetric Key Distribution

Hash Functions

- One way encryption
- Takes n bytes of data and computes a fixed size hash
- Many to one mapping
- Used to ensure data has not been modified
- Used for passwords (see next slide)
- Collisions occur when different data have same hash value

Hash Functions for Passwords

Symmetric Key Encryption

- One key to encrypt and decrypt
 - Idea
 - DES
 - AES

Symmetric Key Encryption

Multiple Key Encryption

Decryption

Dr. Doug Jacobson - Introduction to Network Security - 2009

Decryption

Asymmetric Encryption

- Matched set of keys
- One public, one private
- Either key can encrypt but other key must be used to decrypt
- Publish public key

Asymmetric Encryption

Verifying Alice as a sender

Verifying Bob as a receiver

Dr. Doug Jacobson - Introduction to Network Security - 2009

Digital Signature

Creating a digital signature

Problems with Asymmetric Key Encryption

- Time to compute
- Key revocation

Key Distribution

- Symmetric
 - Physical distribution
 - Use old key to deliver new key
 - Doesn't scale well
 - Trusted third party
 - Kerberos
- Asymmetric
 - Common knowledge
 - -PKI

Message Decoding

Network-Based Symmetric key exchange

Dr. Doug Jacobson - Introduction to Network Security - 2009