Introduction to Network Security

Chapter 1

Network Architecture

Chapter Topics

- Introduction
- Layered architecture
- Key terms
- Protocol Functions
- OSI model
- TCP/IP Model

Course Overview

- Protocols
- Protocol Implementations
- Security Issues
- Performance Issues
- Several programming assignments
 - packet sniffer
 - spam email

- Brought about because of a need for standards
- Layers:
 - take information from above (layer N-1)
 - and pass information below (layer N+1)
- The services are provided through the service access points (SAPs)
- Layer functionality is implemented through an entity
- Each layer contains one or more entities which are responsible for providing services to the N+1 layer

- In order for layers to carry out functions, they need to communicate
- A layer N entity may need to communicate with another layer N entity, which does not reside on the same system, to provide the service.
- The layer N entity uses the layer N-1 services to communicate with the remote layer N entity.

Dr. Doug Jacobson - Introduction to Network Security - 2009

- PROTOCOLS are the rules that have been defined for the layer N to layer N communication.
- They represent extra information
 - example: saying "hello" on the telephone is a protocol
- Protocols indicate when to send data, what language to use, etc.
- A layer specification defines
 - what protocol it uses
 - what it expects as input (SAPs)
 - what functions it provides
- Layer specifications allow multiple vendors to have the same functionality.
 - (ie: different ethernet card brands)

Protocol Data Unit

- Protocol Data Unit (PDU) is the combination of data from the higher layer and the protocol or control information.
- The protocol or control information created by a layer is called the header.
- Each layer adds it's own header

Network Security - 2009

Control Information Encapsulation

Dr. Doug Jacobson - Introduction to Network Security - 2009

Key Terms

- The protocol defines the rules for PEER entity communication
- Service Access Points (SAP) specify how the N entity communicates with the N-1 entity.
- Services are provided by the N entity to the N+1 entity
- Functions are provided by the entity in coordination with the peer entity.

1. Segmentation and reassembly:

- Often physical media or error control issues dictate a maximum data size
- Therefore the data must be divided into smaller packets (Segmentation)
- And eventually put back together (Reassembly)
- Reassembly instructions are included in the header

2. Encapsulation:

The addition of control information to the data element in the form of a header.

- Address: The address of the sender and/or receiver.
- Error Detection Code: Some sort of code is often included for error detection.
- Protocol Control: Additional information needed to implement the protocol.

3. Connection Control:

- Connectionless Data Transfer
 - Data is transferred without prior coordination
 - No set path
- Connection-oriented Data Transfer
 - A logical association, or Connection, is established between entities before any data is transferred
 - Example: telephone

Connection oriented

- The three phases of Connection Control
 - request/connect phase
 - data transfer phase
 - terminate phase

4. Ordered Delivery

- Pieces arrive in the same order as sent
- Not provided by connectionless protocols
- Not required to be provided by Connection -oriented protocols, but it is common for most. (needed for file transfer)

5. Flow Control:

- Technique for assuring that the transmitting entity does not overwhelm a receiving entity.
- Flow Control is typically implemented in several layers.
- Flow control is found in most connectionoriented protocols

6. Error Control:

- Technique that allows a protocol to recover from lost or damaged PDUs.
- Three mechanisms:
 - Positive acknowledgment
 - Retransmit after timeout
 - Error detection

7. Multiplexing:

- Upward Multiplexing occurs when multiple higher level connections are multiplexed on a single lower level connection. Example: many applications utilize TCP (telnet, ftp, email)
- Downward Multiplexing occurs when a single higher level connection is multiplexed on multiple lower level connections. (not as common)
- Addressing is needed to support multiplexing

Multiplexing

Dr. Doug Jacobson - Introduction to Network Security - 2009

Dr. Doug Jacobson - Introduction to Network Security - 2009

Protocol Example (part 2)

OSI Model

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

Physical Layer

- Responsible for the transparent transmission of bit streams across the physical interconnection of systems
- Two configurations:
 - Point-to-point
 - Multipoint
- Physical layer must provide the data link entities with a means to identify the end point.
- Physical connection can be Full Duplex or Half Duplex
- Physical connection can be either bit serial or N bit parallel
- Physical layer must deliver the bits in the same order in which they were offered for transmission by the Data Link Layer.

Data Link Layer

- Main task is to shield higher layers from the characteristics of the physical transmission medium.
- Should provide the higher layers with a reliable transmission which is basically Error-Free, although errors may occur in the transmission on the physical connection.
- Services provided should be independent of the data transmitted.
- Data link layer connects two network entities in adjacent systems called Data link connection.

Data Link Layer

- Each data-unit from the network layer is mapped into the data link protocol data unit along with the data link protocol information, and is called a Frame.
- The data link layer must provide a method of recognizing the start and end of the Frame.
- Frames must be presented to the network in the same order they are received.
- The data link layer should also implement Flow Control to prevent data overrun.

Network Layer

- The primary responsibility of the network layer is to provide the transparent transfer of all data submitted by the transport layer to any transport entity anywhere in the network.
- The network layer must handle the routing of data packets.
- The network layer can be the highest layer in a device such as a gateway or router.
- IP protocol

Transport Layer

- Responsible for a reliable transparent data transfer between two session layer entities.
- Transport connection is provide to the session entities independent of their location.
- Transport layer must optimize resources while maintaining a guaranteed quality of service.
- Session layer requests a level of service and once the transport connection is provided with a certain quality of service it must be maintained unless notified of the change.
- TCP protocol

Transport Layer

- The transport layer is only concerned with transfer of data between session layers. It is not aware of the structure of the underlying layers or the topology.
- The transport layer will use the network layer to get a network connection from one transport entity to another.
- Depending on the quality of the network the transport layer may have to perform additional functions to offer the service.
- The transport layer provides flow and error control.

Session Layer

- The session layer is not concerned with the network.
- The session layer's goal is to coordinate the dialog between presentation layers
- The session layer must provide the establishment of a session connection and the management of the dialog on that connection.
- Example: An atm maintains a constant connection with a bank (transport service). The session starts when the user logs in.

Presentation Layer

- The presentation layer provides the application layer with services related to the presentation of information in a form that is meaningful to the application entities.
- The presentation layer provides the mechanism for the application layer to translate its data into a common format that can be translated by the peer application entity.
- data format M1 → network format → data format M2

Application Layer

- The highest layer and it provides a means for application processes to access the OSI stack.
- Provides both general services and application specific services.
- This is what the user sees
- Examples: telnet, ftp, web

Layered Network Model

User

- Application
- Presentation
- Session

- Transport
- Network

OS

- Data Link
- Physical

software

firmware

hardware

TCP/IP vs OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Transport TCP

IP

Physical Network

TCP/IP Network

Network Security - 2009

37

Non-layered Services

