# Introduction to Network Security

Chapter 3

The Internet

## **Topics**

- The Internet
- Addressing
- Client Server
- Routing

#### The Internet

User's View





The Internet Hierarchy

## **Internet Addressing**

- Different address types
- Hardware address spoofing
- IP address Spoofing
- IP address Space



Dr. Doug Jacobson - Introduction to Network Security - 2009



Dr. Doug Jacobson - Introduction to Network Security - 2009

## **Address spoofing**

- Who can generate the address?
- Spoofing is the ability to change the address
- Who can "see" (sniff) the traffic?

## IP address Spoofing and Sniffing

Message will get to John

Return message will go back to Alice



Dr. Doug Jacobson - Introduction to Network Security - 2009

## **IP Address Space**

- In Version 4 the IP address is 32 Bits
- Total IP address space is 4,294,967,296

#### **IP** addresses

 The IP address is written as a four-tuple where each tuple is in decimal and are separated by a "." (called a dot). When talking about an address you pronounce the word dot. So 129.186.5.102 is pronounced 129 dot 186 dot 5 dot 102

## **IP Addressing**



Figure 3.5 Networks in the Internet Dr. Doug Jacobson - Introduction to Network Security - 2009

#### **Machine names**

- The format for the machine name is:
  - machine.domain Where:
    - machine is unique to the domain or subdomain.
    - and domain is a single domain or a series of subdomains.

#### **Domain Name Conversion**

- Now lets look at how we can convert a machine name into an IP address.
- There are two ways that this conversion can take place.
  - The first is to use a table on each host which maintains the mapping between names and IP addresses. This method required very large tables and made it hard to update.
  - The second, and preferred, method is to use a nameserver. The nameserver is actually a set of nameservers each having authority over different domains and subdomains.

#### **DNS Model**



### **Client Server Model**

Full name: server.dougj.net

IP address:

Listening Port: 80



#### Client Server model



Dr. Doug Jacobson - Introduction to Network Security - 2009

#### **Client Server Model**

| Packets from client to server |                                         |  |
|-------------------------------|-----------------------------------------|--|
| Source IP                     | Client's IP address                     |  |
| Destination IP                | Server's IP address                     |  |
| Source Port                   | Ephemeral port                          |  |
| Destination Port              | Server's port number (often well known) |  |
| Packets from server to client |                                         |  |
| Source IP                     | Server's IP address                     |  |
| Destination IP                | Client's IP address                     |  |
| Source Port                   | Server's port number (often well known) |  |
| Destination Port              | Ephemeral port                          |  |



Dr. Doug Jacobson - Introduction to Network Security - 2009

## **Multiple Connections**

| Stream | Source IP | Destination IP | Source Port  | Destination Port |
|--------|-----------|----------------|--------------|------------------|
| A      | A         | W1             | Ephemeral A1 | 80               |
| В      | A         | W1             | Ephemeral A2 | 80               |
| С      | A         | W1             | Ephemeral A3 | 80               |
| D      | В         | W1             | Ephemeral B1 | 80               |
| Е      | В         | W2             | Ephemeral B2 | 80               |

## Routing

- All hosts and gateways store routing tables
- Each row in the route table contains:
  - Destination address or address range
  - Next hop for that destination address range
  - The physical interface to use for that address range. (ie: which Ethernet card to use)

| Example: <b>Destination</b> | Next        | Inte | erface |
|-----------------------------|-------------|------|--------|
| 129.186.4.0                 | 129.186.5.2 | 254  | en0    |

## Routing



## Dynamic vs Static

#### Static

- Tables built at system configuration time.
- Used in small networks or networks with only one way out

#### Dynamic

- Tables are modified based on network parameters
- Used in larger networks with multiple paths

# Routing Example

| Destination | Next Hop  |
|-------------|-----------|
| Network 1   | Direct    |
| Default     | Router R1 |



Dr. Doug Jacobson - Introduction to Network Security - 2009